

Stoody Hardfacing and High Alloy Joining

ESAB Product Training Applications – Sugar Mills

Guy Chouinard, M.Sc., Eng. Stoody R&D Engineering Manager

January 2016

CONFIDENTIAL AND PROPRIETARY

Sugar Mills – Mechanized Cane Harvesting

Impact resistance – more affordable

- Stoody 965 AP-G (Martensitic steel)
- Stoody 964 AP-G (Niobium carbide steel)
- Stoody 101HC (Chromium carbides)
- VanCar-O (Vanadium carbide)

Abrasion resistance – higher value

Sugar Mills – Cane Table and Classifying

Impact resistance – more affordable

- Stoody 965 (Martensitic steel)
- Stoody 600 (Titanium carbide steel)
- Stoody 100HC (Chromium carbides)

Abrasion resistance – higher value

Sugar Mills – Crushing and Shredding

Impact resistance – more affordable

- Stoody 110 (MnCr austenitic steel)
- Stoody 111 (TiC/NbC in austenitic steel)
- Stoody 600 (Titanium carbide steel)
- Stoody 100HC (Chromium carbides)
- CP-2000 (Chromium carbides)

Abrasion resistance – higher value

Sugar Mills – Crushing and Shredding

Wear pattern from impact and abrasion

Hammer Build-up and Hardfacing Process

1. Preparation:

Clean-up of worn out material Bevelling of working edges

2. Build-up:

Work-hardening buffer layer Classic alloy: Stoody 110 Suggestion: Stoody 111

Hammer Build-up and Hardfacing Process

3. Grinding:

Clean-up of build-up layer Original dimensions Aproximate balancing

4. Hardfacing:

Final weld overlay Impact: Stoody 600 Abrasion: Stoody 100HC Suggestion: CP-2000

Stoody 600 Titanium Carbide Cored Wire

Stoody 600 typical FCAW deposit microstructure Evidence of fine titanium carbide precipitates throughout the martensitic matrix Macro-hardness ranging between 55 and 63 HRC

2.0% C - 8% Cr - 1.5% Mo - 5.5% Ti - Base Fe

Stoody 100HC Chromium Carbide Cored Wire

Stoody 100HC typical FCAW deposit microstructure Commonly applied over a Stoody 110 build-up finish ground to size Macro-hardness from 58 to 62 HRC

4.3% C - 25% Cr - 1% Mo - Base Fe

Hammers with Improved Abrasion Resistance

Austenitic build-up with TiC/NbC addition: Stoody 110 \rightarrow Stoody 111 (3-4 passes) Hardfacing with enhanced microstructure: Stoody 100HC \rightarrow CP-2000 (2-3 passes)

Wear-Resistant Austenitic Underlay - Stoody 111

3.5 3 2.5 2 1.5 1 0.5 0 Austenitic 14% Mn Stoody 110 Stoody 111

ASTM G65 Abrasion Wear Test

Stoody 111 typical FCAW deposit microstructure Evidence of fine titanium carbide (TiC) and niobium carbide (NbC) precipitates Work-hardening up to 50 HRC with improved resistance over Stoody 110

1.65% C - 15.5% Mn - 12.5% Cr - 3.4% Nb - 3.0% Ti - Base Fe

Enhanced Chromium Carbide Hardfacing - CP-2000

Stoody CP-2000 Micro-alloyed formulation (58-64 HRC) 4.8% C - 24% Cr - 1% Mo - 0.6% B **Stoody 100HC** Standard formulation (58-62 HRC)

4.3% C - 25% Cr - 1% Mo

Enhanced Chromium Carbide Hardfacing – CP-2000

ASTM G65 Procedure A / Wear Test Results

ASTM G99 PIN-ON-DISC TEST

Sugar Mills – Press Roll Hardfacing Process

Sugar Mills – Press Roll Hardfacing Process

Press rolls machined out of grey iron cast cylinders

Sugar Mills – Press Roll Hardfacing Process

4

- Arcing (Chapisco)
- Tear drop (Picote)

Side hardfacing (Underlay)

Top hardfacing (Underlay)

Base or buffer layer

Warning:

- The grey cast iron roll shall not reach an overall temperature higher than 210F (100C).
- The forged steel roll shafts shall be inspected for cracks and journal tolerances.

Press Roll Hardfacing Process: Base / Buffer Layer

Typical press roll casting alloy:

Grey cast iron ASTM A48 G2500 Tensile strength: 25 ksi (170 Mpa) Yield strength: 20 ksi (140 Mpa) Hardness: 170-229 HB

A proper buffer layer should:

Allow better weld interface ductility Avoid hardfacing crack propagation Match thermal expansion coefficients

Castweld Ni55-O FCAW cored wire:

Nickel-iron alloy as per AWS A5.15 NiFeT3-Cl Tensile strength: 75 ksi (520 MPa) Yield strength: 46 ksi (320 Mpa) Hardness: 149 HB

Press Roll Hardfacing Process: Top / Side Underlay

Impact resistance – more affordable

- Stoody 102 (Martensitic tool steel) *
- Stoody 117 (Chromium carbides) *
- Stoody 965 (Martensitic steel)
- Stoody 600 (Titanium carbide steel)
- Stoody 100HC (Chromium carbides)
- CP-2000 (Chromium carbides)

Abrasion resistance – higher value

Hardfacing underlay should:

Cover top and sides of milling teeth Support the following tear drop welds Protect from high-pressure abrasion Resist possible residual stones impact

(*) Combined buffer and underlay material on gray iron

Slide 18

Alternate hardfacing material for top underlay: Stoody 117 cored wire

Semi-austenitic deposit stenghtened with chromium carbides and fit to build-up. As-welded hardness of 43-45 HRC and work-hardening up to 55-60 HRC. Recommended as underlay for the tear drop welds when the latter are spaced out. Still allows for harder tear drop hardfacing alloys like **Stoody 100HC** or **CP-2000**.

Press Roll Hardfacing Process: Tear Drops (Picote)

Tear drop hardfacing welds should:

Resist impact and high-stress abrasion Achieve the right profile within three layers Allow to grab the sugar cane fibers (bagasse) Insure the overall efficiency of the mill

Typical pearl diameter: 3/16" (5 mm)

Impact resistance – more affordable

- ✤ Stoody 600 (TiC in martensitic steel)
- **Stoody 100HC** (Chromium carbides)
- CP-2000 (Chromium carbides)

Abrasion resistance – higher value

Press Roll Hardfacing Process: Arcing (Chapisco)

Impact resistance – more affordable

- Stoody 100HC (Chromium carbides)
- CP-2000 (Chromium carbides)
- CP-2001 (Complex carbides)
- VanCar-O (Vanadium carbide)

Abrasion resistance – higher value

Arcing hardfacing droplets should:

Resist sliding abrasion from the bagasse Insure surface roughness down tooth sides Allow to drag and split the sugar cane fibers Improve the overall efficiency of the mill

Typical droplet size: 3/32" (2.5 mm)

Press Roll Hardfacing Process: Arcing (Chapisco)

Automated arcing system set-up Guadalajara, Mexico

Press Roll Hardfacing Process: Arcing (Chapisco)

Globular arc transfer required for blowing weld droplets properly Welding current adjusted well below common practice (~50%) A wet roll will allow for a finer and rougher arcing pattern

Press Roll Hardfacing Process: Major Tooth Repairs

1

Build-up / Build-up AP-G

Castweld Ni55-O buffer

Build-up / Super Build-up

CONFIDENTIAL AND PROPRIETARY

Sugar mill shaft bearing lands: Submerged arc welding process (SAW) Stoody R-20 neutral basic flux

ThermaClad 8620 - Build-up ThermaClad 410 - Overlay

Stoody 100HD / 101HD

Build-up / Super Build-up

Stoody 100HC / CP-2000

Bagasse shredder anvils

Stoody 100HC / CP-2000 / 160FC

Stoody 160FC Tungsten Carbide Nickel Cored Wire

Even blend of Cast-WC/W₂C and Macro-WC at 40 weight % in a 40-45 HRC nickel (NiSiB) matrix Stoody 160FC 1/16" (1.6 mm) under C25 mixed gas at 16-18V and 150 ipm WFS

Sugar Mills – Böhler-UTP Equivalence Chart

ESAB-Stoody FCAW	Böhler-UTP SMAW	Böhler-UTP FCAW	General Product Description
Versalloy AP-G	UTP 63	SK 402-O	Dissimilar metals joining.
Stoody 110	UTP BMC	SK AP-O	High-impact MnCr build-up
Castweld Ni55-O	UTP 86-FN	SK FNM-G	Cast iron NiFe buffer layer.
Super Build-up	UTP Dur 350	SK 350-O	High-load build-up (35-40 HRC).
Stoody 102-O		~ SK 258L-O	Hot work tool steel (48-53 HRC).
Stoody 965-O	~ UTP Dur 670	SK 600-O	Martensitic steel (56-60 HRC).
Stoody 600		SK 258 TiC-O	Impact and high-stress abrasion.
Stoody 100HC	~ UTP Ledurit 60	SK 255 Mo-O	Enhanced chromium carbide.
Stoody CP-2000			Micro-alloyed chromium carbide.
Stoody 101HC	UTP 718S	SK Cane Grip S	Basic chromium carbide. Arcing.
Stoody CP-2001	~ UTP 713	~ SK A 45-O	Complex carbides. Arcing.
VanCar-O	~ Vanadium 500	~ SK A 64-0	Vanadium carbide. Arcing.

Eutectic and Welding Alloys Equivalence Chart

ESAB-Stoody FCAW	Eutectic FCAW	Welding Alloys FCAW	General Product Description
Versalloy AP-G	~ OA 690	Tetra V312-G	Dissimilar metals joining.
Stoody 110	OA 3205	Hardface AP-O	High-impact MnCr build-up
Castweld Ni55-O	~ DO 21 NiTi	~ Cast NiFe-G	Cast iron NiFe buffer layer.
Super Build-up	OA 3010	Hardface T-O	High-load build-up (35-40 HRC).
Stoody 965-O	OA 4415	Hardface L-O	Martensitic steel (56-60 HRC).
Stoody 102-O	AN 4617	Hardface W-O	Hot work tool steel (48-53 HRC).
Stoody 600	OA 4923	Hardface TiC-O	Impact and high-stress abrasion.
Stoody 100HC	~ AN 4633	~ Hardface HC-O	Enhanced chromium carbide.
Stoody CP-2000			Micro-alloyed chromium carbide.
Stoody 101HC	OA 4601	Hardface FC-O	Basic chromium carbide. Arcing.
Stoody CP-2001	~ OA 3952	~ Hardface CV-O	Complex carbides. Arcing.
Stoody 160FC	DO 11	Hardface NiCarbW	Extreme abrasion (WC/W ₂ C).